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Birefringent filters (or Lyot filters, as their implementation is most widely used in lasers) are popular radiation
wavelength selectors. Their adaptations to fiber lasers are quite diverse and feature many original solutions. This
work analyzes various configurations of Lyot filters in fiber lasers and discusses modifications of these filters
under new conditions. The question is further discussed regarding the possibility of choosing the initial bire-
fringence value in the discrete and fiber-optical implementations of the filter, and of subsequent birefringence
adjustment. Also, the prospects of electronically controlled Lyot filters and their application in fiber-optical
sensors are explored. Peculiarities of all-fiber Lyot filters are demonstrated in comparison to their conventional
implementations. © 2025 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence

(AI) training, and similar technologies, are reserved.
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1. INTRODUCTION

Birefringent (BF) filters are a common type of radiation wave-
length selector in volumetric tunable lasers (VTLs) [1–3]. This
type of selector is long and well-known [4–7], and it consists
of sequentially placed BF plates made of the same material and
polarization analyzers. As the light passes through a BF plate,
its initial polarization (usually linear) generally undergoes a
change (the output polarization depends on the thickness of the
plate, index of BF, and radiation wavelength). The light then
passes through the polarization analyzer. This function may
be performed by polarizing materials, Brewster plates (partial
polarizers), and other optical elements that may have different
transmittances for radiation with different polarizations. The
radiation with changed polarization suffers losses, whereas that
with unchanged polarization has the highest transmittance.
The transmission function of a BF filter composed of a BF plate
sandwiched between two polarizing analyzers exhibits a series of
transmission peaks corresponding to the radiation wavelengths
that do not change polarization when passing through the
filter. A salient feature of BF filters is a relatively large distance
(& 150 nm) between the transmission peaks at a reasonable
thickness of the BFt plate (e.g., 0.3–0.5 mm for a crystalline
quartz plate).

There exist two most widespread variations of BF filters: Lyot
[4] and Solc [7] filters. In Lyot filters used in lasers, each BF
plate is inserted between two polarization analyzers (this role is
often played by Brewster surfaces of these plates if positioned
with a tilt), whereas in Solc filters, polarization analyzers are
only used at the input and output of the entire set of BF plates.
Another difference between these types of filters is that Lyot
filters use plates of different thicknesses (they differ by a factor
of n), whereas in Solc filters, all plates have the same thickness.

It is more difficult to ensure low transmission losses in a Solc
filter because the plate faces need an anti-reflection coating. This
is why Lyot filters are more often used in lasers.

In order to narrow down the transmission peak of a Lyot filter,
additional BF plates of greater thickness are inserted. In such
a configuration, the distance between the main transmission
peaks (with∼100% transmission) is determined by the thinnest
plate, and the width of the transmission peak is defined by the
thickest plate.

This work analyzes the application of BF filters (Lyot filters,
mostly) in fiber lasers, discusses various ways of their use, and
estimates the prospect of adaptation of this selector type to fiber
lasers.

A. Impossibility of Using a BF Selector in Fiber
Lasers As It Is Used in Volumetric Tunable Lasers

In VTLs, the selector usually needs to provide a relatively small
discrimination of radiation at unwanted wavelengths. This is
related to a relatively low-active medium gain. The optimal
transmittance of the cavity output coupler is ∼5%−10%, and
so the single-pass losses at the unwanted wavelengths of around
(.0.1% are sufficient for their suppression. The transmittance
of a Brewster surface for s-polarized radiation is ∼0.9 (for a
crystalline quartz plate), and for arbitrary polarization, the
transmittance of such a Brewster quartz surface is varied within
the range of∼0.9−1.0. Such a relatively low discrimination of
undesirable wavelengths is insufficient for a fiber laser, in which
the cavity gain is significantly higher compared to volumetric
solid-state tunable lasers [8]. The output coupler transmittance
in a fiber laser may be as high as 96% (Fresnel reflection from the
output face of the waveguide) [9,10]. Therefore, Lyot filters in
their conventional low-selectivity configuration (with Brewster
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surfaces of birefringent plates of the filter as partial polarizers)
may not be used in fiber lasers.

B. Adaptation of Birefringent Selectors to Fiber
Lasers

In fiber lasers, a BF selector must have better polarization dis-
crimination for radiation of various wavelengths, thus leading to
the replacement of partial polarizers with complete ones. Such
a role may be played in fiber lasers by polarization-maintaining
fibers. For compatibility with the “all-fiber” format, volumet-
ric BF plates are replaced with fiber pieces inserted between
two polarizers [11] or polarization-maintaining fibers [12].
Polarization selectivity of fiber-optical “polarizers” may be
improved by recording 45◦-tilted Bragg gratings into the
PM fibers, between which the analog of the birefringent Lyot
filter plate is spliced [13]. The fiber pieces playing the role
of BF plates may be made of the standard SMF fiber [14] or
polarization-maintaining fiber, whose axis is rotated (usually
by 45◦) with respect to the axes of the input and output fiber
polarizers [15,16]. The fiber stretches, playing the role of BF
plates, as a rule, have fixed birefringence, even though it was
already demonstrated that it is possible to adjust it dynamically
through mechanical [14,17] or thermal [17–19] action on the
fiber. Mechanical action on an optical fiber aimed at modifying
birefringence may be implemented by both variation of applied
tension and bending of the fiber wound around a reel with an
adjustable diameter [14]. Modification of birefringence caused
by change in the fiber bend radius was discovered relatively
long ago [20–22]. This effect allows making a Lyot filter “plate”
with adjustable birefringence out of standard single-mode fiber
wound around a reel with an adjustable diameter [23]. It is
also possible to modify the fiber birefringence through a fiber-
optical polarization controller directly acting on the Lyot filter
fiber [24].

In a BF filter, the role of optical plates with different thick-
nesses (and therefore with different selectivity values) may be
played by pieces of fiber with varying lengths, and synchronous
detuning of their transmission peaks may be achieved by making
them out of the same material and changing their temperature
synchronously. Rather infrequently, spectral tuning is achieved
by imitation of rotation of the fiber-optical version of the BF
selector “plate” [25] (rather than the PM fiber itself, the plane
of radiation polarization is rotated around the PM fiber by two
half-wave plates inserted at the input/output of the fiber). This
is similar to the rotation of the BF plate of the selector in its free-
space volumetric implementation but violates the “all-fiber”
concept.

Generally, the wavelength tuning of a fiber-based BF selector
is its weak spot. Until now, there is still no generally accepted,
fast, and convenient (let alone electronically driven) tuning
method. We will mention only one approach that allows manual
control of spectral tuning of a BF filter. It consists in splicing into
the filter fiber a polarization controller, which allows manual
adjustment of the total birefringence of a filter “plate” [26]. The
adjustment of the degree of birefringence is possible not only
with the help of a polarization controller but also with a variable
wave retarder placed next to the stationary birefringent fiber
[27]. The birefringent fiber sets a basic delay in the propagation
of orthogonally polarized waves, and the additional element (the

radiation polarization controller or variable wave retarder) can
modify this delay.

It should be noted that the wavelength tuning function of
a BF filter is not always required. In many cases, such a filter is
used solely for the selection of a specific (or even arbitrary) radia-
tion wavelength. In this case, different plates (or different pieces
of fiber) of the BF filter may be made of different materials, and
the only necessary condition for the normal operation of such a
BF filter as a multi-component selector will be the co-incidence
of spectral transmission peaks of all the filter components (plates
of fiber stretches). For simplicity of such co-incidence, the filter
components are usually made of the same material, but their
thicknesses (in the case of plates) or length (in the case of optical
fiber) are chosen to be multiples of each other. For a fixed single
wavelength, the BF filter does not need any control and may be
used as a passive element.

However, Lyot filters may be used not only for the selection
of a single wavelength but also for the generation of dual- or
multi-wavelength radiation with equidistant spectral positions
of radiation lines. Its main advantage in comparison with similar
selectors (Fabry–Perot filter, Mach–Zehnder interferometer,
and so on) lies in the fact that it may provide relatively large and
stable spectral separation of radiation lines via simple means
[28–34]. This is important for dense-wavelength-division
multiplexed transmission systems and for optical time-division
multiplexing techniques.

The Lyot filter does not always allow the selection of the
desired wavelength, especially if it includes a manual polariza-
tion controller [35]. Changes in birefringence occurring in the
process of tuning this controller may be unpredictable. This
is why a Lyot filter with such a controller selects an arbitrary
radiation wavelength within the active medium gain contour,
and the laser itself is called “switchable” instead of “tunable.”

The function of a Lyot filter is not limited by the choice of the
radiation wavelength(s). The width of the transmission peak
affects the output radiation spectral width and may be used for
controlling the duration of the generated pulses in short-pulse
fiber lasers [16,26,36,37].

2. LYOT FILTER MODIFICATIONS FOR
FIBER-OPTICAL SYSTEMS

The most widely used Lyot filter implementation in fiber
lasers is a piece of PM fiber inserted between two polarizers
(see Fig. 1). Such polarizers may also be made of PM fiber (in
which case their optical axes are rotated by 45◦ to the axes of the
central piece). Modifications of the filter are mainly done in two
directions:

1. conceptual modifications, in which new mechanisms
and/or effects are introduced into the filter operation; and

2. practical modifications, in which the principle of operation
remains the same, but the design is somehow adapted to a
specific configuration.

Among the examples of conceptual modifications, one can
mention the combinations of a Lyot filter with other selec-
tors (Lyot–Sagnac filter [38–40]) and using the laser’s active
medium as a filter “plate” [41]. Examples of design modifica-
tions of the Lyot filter are frequent and include exchanging the
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Fig. 1. Evolution of the Lyot filter from discrete to fiber-optical
implementation: T, transmission; s, s polarization; p, p polarization;
PM, polarization-maintaining.

standard input or output polarizer for the one making part of an
optical diode [42] or for a polarization controller [43], removal
of the central piece of the PM fiber, and splicing of the input and
output PM fibers at a certain angle [44].

The last example demonstrates that the principle of operation
of the Lyot filter may be implemented without a special birefrin-
gent optical fiber. Instead, even the standard SMF fiber may be
used, where birefringence may arise either due to mechanical
stress or to ellipticity of the core. In particular, the traditional
radiation polarization controller, in which anisotropic fiber
undergoes mechanical action (and becomes birefringent), may
play the role of a Lyot filter “plate.” Correspondingly, certain
implementations [45,46] of wavelength tuning in fiber lasers
that rely on changes in polarization do not resemble the Lyot fil-
ter externally but are based on its principle of operation and may
be considered as artificial Lyot filters. These implementations
are most similar to the Lyot filter and not to other polarization
filters (Solc filter [7] and Ohman [47]).

It would not be an overstatement to say that in fiber lasers,
Lyot filters are used in such modifications that are practically
impossible for volumetric lasers with discrete elements.

Let us demonstrate some of the most broadly known fiber-
optical modifications of the Lyot filter in ring and linear
laser cavities (Fig. 2). Figure 2(a) shows ring cavities made of

Fig. 2. Examples of implementation of the Lyot filter in ring (a), (b),
(c) and linear (d) fiber laser resonators: TBG, tilted Bragg grating; SMF,
single-mode fiber.

Fig. 3. Illustration of possible choice of optical axis direction in a
discrete implementation of a Lyot filter: α, angle between the optical
axis and the face of the Lyot filter plate.

polarization-maintaining optical fiber, whereas Figs. 2(b) and
2(c) are related to ring cavities mostly made of the non-PM fiber.
The function of a radiation polarizer may also be performed
by Bragg gratings written into the fiber core at the angle of
45◦ to the core axis [48–50]. Moreover, Bragg gratings may be
imprinted directly into the PM fiber [51]. Figure 2(e) demon-
strates a Lyot filter implementation in a linear cavity [52], where
the function of reflector may be fulfilled by an ultra-broadband
loop mirror based on a fiber circulator [53].

There is another important question that needs to be
emphasized when discussing the discrete and fiber-optical
implementations of the filter. In the discrete implementation,
the initial birefringence value may be selected by choosing the
direction of the optical axis (see Fig. 3, angle α). Greater angles
α result in higher rates of wavelength tuning (nm/α), and at
α ∼= 57◦, this rate reaches its maximum [54]. In a fiber-optical
implementation of the filter, the direction of the “plate’s” optical
axis is determined by the position of the birefringence-inducing
stress rods set at fabrication of the PM fiber. Hence, there is prac-
tically no possibility of variation of the initial birefringence value
through rotation of the optical axis. This is why in fiber-optical
implementations of the Lyot filter, the initial birefringence can
only be set by choice of the “plate” material.
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It is important to mention that the use of birefringent
material is not the only way to create a BF filter. Reference [55]
proposes a hollow-core fiber that introduces different losses for
radiation of different polarizations when bent.

3. ELECTRICAL CONTROL OF LYOT FILTERS

The problem of electrical control over Lyot filters arose a long
time ago, and until today, no complete satisfactory solution has
been found. In free-space lasers with discrete implementation of
Lyot filters, they are usually tuned by the mechanical rotation of
the entire filter component. This rotation is performed by a step
motor or some other electromechanical drive. Another natural
solution is adopting liquid crystals to the role of Lyot filter plates
[56]. Electrical control of liquid crystals avoids mechanical
movement of the filter for tuning. However, other problems
arise related to noticeable optical losses introduced by liquid
crystals and their relatively low optical damage threshold. In
addition, it is not clear how such a device may be implemented
within the “all-fiber” concept. Consequently, this approach
cannot be considered optimal. Still another solution relies on an
electro-optical crystal (e.g., lithium niobate [57]) as a Lyot filter
plate. It is possible to adjust the birefringence of such a plate by
the application of high voltage. In fiber lasers, the problem of
controlling a Lyot filter is complicated by the continuity of its
“plates” with other cavity elements (it is impossible to rotate
the “plates” separately) and by the absence of commercial fibers
made of electro-optical crystal materials. An electromechanical
drive may be used not only for rotation of the Lyot filter but also
for mechanical action on the fiber of the fiber-optical imple-
mentation of the filter. For example, a piezo-cylinder is used for
tensioning the optical fiber wound around it [58].

Dynamic birefringence variation in a Lyot filter “plate” may
be achieved by adjustment of a polarization controller placed
after the PM fiber (or an SMF bend) within the filter [23,34].
Recently, there started appearing electrically driven fiber-optical
polarization controllers [59] that may be used for electronically
controlled laser wavelength tuning.

4. FIBER-OPTICAL SENSOR APPLICATIONS
OF LYOT FILTERS

The ability of optical fiber to change its birefringence under the
influence of external mechanical or thermal factors is utilized for
solving problems in sensing. Mechanical factors include tension
or compression, shear, torsion, or bending of the fiber. Torsion
sensors (in various structures, beams, columns, and so on) are
important, and they are used for real-time monitoring of many
buildings and structures. Designing such a sensor on the basis
of a Lyot filter allows for measurements with interferometric
accuracy and highest achievable sensitivity [12,14,60,61]. The
sensitivity of Lyot filter “plate(s)” to changes in birefringence,
induced by ambient factors and direct physical action on the
fiber, makes it possible to use this type of filter as a sensor of
various parameters.

It must be pointed out that the sensitivity of birefringence
to mechanical pressure on the fiber does not suffer significantly
(or even not at all) from a protective sheath of the fiber (either
deposited directly onto the cladding or the coating layers).

Therefore, fiber-optical sensors based on variation of bire-
fringence are broadly used in construction, for monitoring
hydraulic works, as well as railway, electrical power, and oil and
gas structures, and so forth. Birefringent sensors are especially
sensitive to factors (for instance, pressure) affecting a certain
volume of the fiber. In this case, birefringence is more strongly
modified. Applications of birefringent fiber-optical sensors
do not, as a rule, rely on point detection of any parameters
(such as temperature). This type of sensor is effective for the
measurement of average values over a certain volume.

5. CONCLUSION

Birefringent filters (usually, Lyot filters) have passed from
discrete implementations in volumetric free-space lasers to
fiber-optical design in fiber-based systems, where they are used
as selectors and sensors. When used as radiation wavelength
selectors in fiber lasers, these filters lost the possibility of choos-
ing the direction of the optical axis of the birefringent “plates.”
In return, however, they gained the full fiber integration. The
fiber-optical Lyot filter still remains the coarsest radiation wave-
length selector, and the problem of optimal electronic control of
its parameters has not yet been solved. As a fiber-optical sensor,
the Lyot filter has found a multitude of applications, mostly
related to the detection of volumetric (as opposed to point)
action on the fiber.
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