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A B S T R A C T   

Machine learning methods are being successfully applied in various domains of human activity, including optics. 
Can they become a universal instrument capable of improving user aspect of photonic devices? Is their appli
cation a necessary element of such improvement? Answers to fundamental questions arising from application of 
machine learning methods in ultrashort-pulsed lasers are discussed. Future prospects and current fundamental 
limitations of such methods are analysed.   

1. Introduction 

The present work focuses on conceptual problems of application of 
machine learning (ML) methods in photonics, practical questions arising 
upon familiarising oneself with numerous books [1–12], specialised 
journals [13–17], courses, webinars, forums and articles [18–53] that 
mushroomed within recent years around the topic of which new possi
bilities can be developed from intellectual analysis of data in our life 
generally and in photonics particularly. It is stated that we are 
approaching the threshold of a new scientific revolution (or at least the 
threshold of total automation) and that the coming technological para
digm will be actively based on algorithms of artificial intelligence (AI). 
The current wide-spread excitement around ML/AI leads one to think 
about the applicability of ML methods in those fields where their 
advantage is not immediately obvious, even though overall, ML methods 
are at the centre of the new technological revolution and their further 
development is quite certain. 

Massive development of ML methods (including the recent adoption 
of deep learning [6–8,10] relying on a vast number of adjustment pa
rameters) began with rapid pace of computer technologies, technical 
possibilities of big data manipulation, and understanding of complexity 
limits related to constraints of the human brain (Fig. 1). Owing to the 
advent of computers, a certain part of algorithms was successfully 
transferred from man’s mind into an artificial digital medium where 
they may be executed much faster, retained more reliably, etc. On the 
basis or with significant reliance on ML algorithms, more and more 
advanced robots are being created, unmanned vehicle technologies are 
developed, progress is being made in data recognition technologies 
(including speech recognition and machine translation), inverse 

problem solving (molecular design, etc), epidemic process modelling, 
and so forth (a few recent examples of successful application of ML 
methods are given in [54–64]). Introduction of ML/AI into certain 
technologies has substantially accelerated their advancement. Success in 
these technologies was construed to warrant wider application of ML 
methods in drivers fields and gave grounds to conclusions as to universal 
nature of these methods, a claim, no doubt, exaggerated. It is often 
assumed that ML/AI alone is able to fully develop the true potential of 
such complicated equipment as lasers, solving problems better, faster, 
and cheaper than man (or at least on the level of human achievement). 
Let us find out whether or not this may be so. First of all, we would like 
to understand if a laser system is one capable of learning. Would AI be 
capable of extracting knowledge from data streams in laser systems and 
of further modifications to the initial algorithms according to the new 
knowledge? Would it be thus possible to improve the operation of a laser 
system in some sense? 

Photonics, as well as optics, constitute vast and diverse fields. Suc
cessful application of some approaches in one department of photonics 
does not necessarily mean that similar approaches will be as successful 
in its other departments. 

It is necessary to recall that the methods in question pertain to AI and 
are conceived to search for solutions by learning in the process of solving 
analogous problems. What kind of analogous problems may exist, for 
example, in short-pulsed fibre lasers? Arguably, this is generation of 
pulses with different parameters and/or structure. What can be facili
tated by applications of ML methods that generally produce results in 
proportion to the digested data volume? Conceivably, the laser could, as 
a result, be operated better, while generating the desired output pa
rameters. Conceptually, this is all valid and a positive effect of ML 
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application should be obvious. However, the devil is in the detail, and 
hypothetical possibilities may be as far from reality as mathematics is 
from physics. 

2. Discussion 

We can start by asking how big data could be generated in short- 
pulsed lasers. Even the presence of various generation regimes produc
ing different pulses does not automatically prove big data in the laser. At 
a minimum, these data must be registered and transmitted for process
ing and analysis. It is implied that the laser should be buried under a pile 
of measurement equipment (auto-correlator, spectrum analyser, and so 
on) and sensors for collection of data required for implementation of ML 
methods (Fig. 2). The more a machine knows, the more intelligent it is. 
Therefore, the more complex and ‘smart’ its behaviour may be. Data 
collection equipment may be used at the laser fabrication facility or 
directly on user’s premises. It is obviously unprofitable to use such 
equipment as an ‘appurtenance’ to each laser, because its cost may 
exceed that of the laser itself. Additionally, the learning time and the 
data set required for such learning are often overlooked in discussion, 
even though these parameters are practically important and not infre
quently, it is taking into consideration of these parameters that de
termines applicability of ML methods. 

In order to avoid supplementing each laser with a set of measure
ment equipment, an idea naturally arises that the laser parameters 
should be characterised ‘for all occasions’ at the factory (creation of 
generation regime maps, etc). This approach does not, however, succeed 
all the time. Real life is richer than any engineer’s imagination, therefore 
it is impossible to circumscribe all the situations related to the laser 
operation. Supposedly, it is these situations that call for application of 
ML methods. It should be remembered, nevertheless, that so far these 
methods have been designed by humans and not always can be used 
without human intervention. No allusion is made here to occasional use 
of deterministic algorithms (such as the gradient descent method, for 
instance) under the guise of ML methods. Instead, it is pointed out that 
until now, AI is incapable of adequately and efficiently responding ‘for 
all occasions’. There are many reasons for this, beginning with insuffi
cient processing power and ending with poorly developed ML methods. 

Neither should it be forgotten that ML methods may be only effica
cious when either the human intellect is insufficient (lacking computa
tional power and memory) or ML algorithms offer a significantly 
cheaper solution. It must be borne in mind that from the practical point 
of view, ML is aimed at development of system capable of adaptation to 
solving various problems without explicit algorithm coding, that is 
systems capable of learning. The question arises: what is it they are 
supposed to be learning? Could this be selection of the best (optimal, 
pre-determined, etc.) solutions from the modest number of solutions 
possible in a typical laser? 

Secondly, even the laser field itself is quite broad (leaving alone the 
entire photonics domain), there are as many different lasers as, for 
instance motor vehicles. There exist lasers that do not need any AI, they 
operate perfectly without it. A simple mnemonical rule may be here 
suggested: a well-operating laser can dispense with AI algorithms alto
gether, it is a poorly operating laser that needs ML methods, optimisa
tion, and so forth. 

It should also be pointed out that AI algorithms must be profitable: 
something should become better, faster, cheaper. So far, application of 
such algorithms often ends up solving a given problem slower and more 

Fig. 1. Artificial intelligence and laser: fad or trend?  

Fig. 2. Possible ways of data collection in a laser: with a set of laboratory 
measurement equipment (left) and with built-in sensors (right). 
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expensively, while the quality of the provided solution places it rather in 
the philosophical realm. Furthermore, analysis of application fields of AI 
algorithms demonstrates patent lack of universality and obvious speci
ficity of these algorithms. Generally, ML methods rarely enter the design 
of photonic devices and are not even used as a marketing ploy. This may 
be caused by the users’ distrust of these methods, especially that some of 
them are in reality backed by conventional explicit branching algo
rithms for the majority of possible cases. 

Machine intellect will undoubtedly become the main technological 
innovation of the future progress, but today, ML methods find limited 
application. This is also valid for photonics in general and for lasers in 
particular (see, for example, [19–26]). We should not think that prob
lems in lasers, which have not been solved by humans (setting of the 
generation regime, selection of the output radiation parameters, etc.) 
will necessarily fall within the capabilities of an AI system. So far, at
tempts to apply AI methods everywhere have been mainly fostered by 
unreasonable expectations. Machine mind potentially may become 
much wider applicable, but until today, a ‘smart’ laser is rather remi
niscent of a ‘smart’ house, and not of an independent intelligent device 

(when laser works better on the basis of sensor reading). Laser 
“learning” methods are in reality often those of automatic control that 
leads to the desired parameters of the output radiation. However, 
methods of automatic control are not equivalent to those of machine 
learning. This is not a matter of computerisation of lasers and control 
over their parameters through deterministic digital algorithms. Such 
algorithms are also used and often wrongly labelled “AI methods” as a 
marketing ploy. For a true powerful AI of a human or even super-human 
level, the problem of tuning for desired (or best) radiation parameters is 
not a most complicated one. We can expect not only efficient control and 
management, but also novel solutions (for instance, next-generation 
ML/AI architectures and so forth). 

At present, such an intelligence is more seen as a goal rather than an 
available result. In answering the question earlier posed on the learning 
capabilities of a laser system, it should be stated that a specific answer 
may not be given, because the question is too general. The laser industry 
is more likely to undergo a technological reset, after which intelligent 
algorithms will find application alongside new materials and energy 
efficient approaches. Emergence of ‘smart’ lasers on the global tech
nology horizon is still much more a tribute paid to new buzz-words than 
actual development of light generation devices with artificial intelli
gence capabilities. However, it is already possible to predict that in the 
foreseeable future (even as soon as within 5–10 years), many devices 
including lasers will possess a measure of such capabilities. Over a 
longer period (beyond our predictions) photonic devices, such as laser, 
passive devices, etc. will be self-learning and this capability will be 
designed into them, i. e. will be supported by the architecture and 
implementation of these products. Presently, such (still hypothetical) 
capabilities are rarely included during the design phase of photonic 
devices. When such capabilities (at least a USB port for external control 
to begin with) will be included into the photonic device conception, the 
behaviour of such devices will certainly become more intelligent. 

3. Conclusion 

Unreadiness of most modern photonic devices for profitable appli
cation of ML methods is only a part of the problem. The key problem still 
unsolved today is creation of a strong artificial intelligence of the human 
level that would be able to profitably realise the expected new func
tionality. This does not, nevertheless, prevent us from developing this 
field at the level of concepts and new approaches. 
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